
Mixed PrecisionQuantization for ReRAM-based DNN Inference

Accelerators

Sitao Huang1, Aayush Ankit2, Plinio Silveira3, Rodrigo Antunes3, Sai Rahul Chalamalasetti4,

Izzat El Hajj5, Dong Eun Kim2, Glaucimar Aguiar3, Pedro Bruel4,6, Sergey Serebryakov4, Cong Xu4, Can Li4

Paolo Faraboschi4, John Paul Strachan4, Deming Chen1, Kaushik Roy2, Wen-mei Hwu1, and Dejan Milojicic4

1University of Illinois at Urbana-Champaign, USA 2Purdue University, USA 3Hewlett Packard Enterprise, Brazil
4Hewlett Packard Enterprise, USA 5American University of Beirut, Lebanon 6University of São Paulo, Brazil

{shuang91,dchen,w-hwu}@illinois.edu, {aankit,kim2976,kaushik}@purdue.edu, izzat.elhajj@aub.edu.lb, {firstname.lastname}@hpe.com

ABSTRACT

ReRAM-based accelerators have shown great potential for acceler-

ating DNN inference because ReRAM crossbars can perform analog

matrix-vector multiplication operations with low latency and en-

ergy consumption. However, these crossbars require the use of

ADCs which constitute a significant fraction of the cost of MVM

operations. The overhead of ADCs can be mitigated via partial sum

quantization. However, prior quantization flows for DNN infer-

ence accelerators do not consider partial sum quantization which is

not highly relevant to traditional digital architectures. To address

this issue, we propose a mixed precision quantization scheme for

ReRAM-based DNN inference accelerators where weight quantiza-

tion, input quantization, and partial sum quantization are jointly

applied for each DNN layer. We also propose an automated quanti-

zation flow powered by deep reinforcement learning to search for

the best quantization configuration in the large design space. Our

evaluation shows that the proposed mixed precision quantization

scheme and quantization flow reduce inference latency and energy

consumption by up to 3.89× and 4.84×, respectively, while only

losing 1.18% in DNN inference accuracy.

KEYWORDS

Mixed precision quantization, ReRAM, DNN inference accelerators

1 INTRODUCTION

Quantization is an important optimization for reducing DNN infer-

ence latency and energy consumption [1–10]. Workflows that apply

quantization to DNNs commonly target the weights and inputs of

the DNN layers. Reducing the number of bits used to represent

weights and inputs saves memory space, reduces data movement

overhead, and shortens the latency of arithmetic operations. When

different quantization configurations are chosen for different layers,

the quantization is considered to be mixed precision.

ReRAM-based accelerators have shown great potential for ac-

celerating DNN inference because ReRAM crossbars can perform

analog matrix-vector multiplication (MVM) operations with low

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-7999-1/21/01. . . $15.00

https://doi.org/10.1145/3394885.3431554

latency and energy consumption [11–15]. However, ReRAM cross-

bars require ADCs to convert the partial sum computed by each

crossbar from an analog to a digital value before it is combined with

partial sums from other crossbars. These ADCs consume a large

fraction of the total chip area and energy. Since the cost of ADCs

scales exponentially with their precision, reducing the precision of

ADCs is an important optimization. Hence, ReRAM-based acceler-

ators provide the opportunity for a third important quantization

target, the partial sums at the ADC output, which are not usually a

concern for traditional digital architectures.

To take advantage of this opportunity, we propose an automated

mixed precision quantization flow that jointly targets weights, in-

puts, and partial sums. Since the design space is large and prohib-

itive to search exhaustively, we use deep reinforcement learning

(DRL) to search for the best configuration. Our evaluation shows

that the proposed quantization flow reduces inference latency and

energy consumption by up to 3.89× and 4.84×, respectively, while

only losing 1.18% in accuracy.

We make the following contributions:

• A quantization scheme for ReRAM-based DNN inference

accelerators that jointly targets weights, inputs, and partial

sums, with a functional simulator that models the quantiza-

tion scheme

• An automated mixed precision quantization flow powered

by deep reinforcement learning that searches for the best

quantization configuration for DNN inference on ReRAM-

based accelerators

• An evaluation of the joint impact of weight, input, and partial

sum quantization on the energy and latency of ReRAM-based

DNN inference accelerators

2 QUANTIZATION SCHEME

2.1 Background

ReRAM crossbars are circuits capable of performing MVM oper-

ations with low latency and energy consumption by leveraging

analog computing. Figure 1 shows a high-level diagram of a typ-

ical crossbar architecture. The weights of a matrix are stored in

the resistive memory cells of the crossbar. 𝑔𝑖 𝑗 in Figure 1 is the

conductance of a memory cell. The input vector is applied as a

voltage at the rows of the crossbar (𝑉𝑖). The output vector is read

as the current at the columns of the crossbar (𝐼 𝑗). The current is

then converted to a digital value using an ADC.

Since practical crossbars are only capable of performing low

precision MVM operations, higher precision MVM operations are

372

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Huang, Ankit, Silveira, Antunes, Chalamalasetti, El Hajj, Kim, Aguiar, Bruel, Serebryakov, et al.

Partial Sum
Quantization

Weight Quantization
In

pu
t Q

ua
nt

iza
tio

n
QuQuuQuQQQQ atittt

DAC

DAC

DAC

DAC

INT INT INT INT

Multiplexer

ADC
Shift-&-Add

g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44
I1 I2 I3 I4

V1

V2

V3

V4

�� = �

���

�

	�
 ���

Figure 1: ReRAM Crossbar Architecture and Quantization

realized by bit-slicing the weights and inputs. Weight slices are

distributed across multiple crossbars, and the partial sums of each

crossbar are then shifted and added together. Input slices are streamed

sequentially into each crossbar, and the partial sums of each input

slice are also shifted and added together. If the weight matrix di-

mensions are larger than the crossbar dimensions, the matrix is

divided into tiles and the partial sums of each tile are then added

to produce the final MVM result.

2.2 Weight and Input Quantization

Recent research has revealed that weights (synapses) and inputs

(activations) in a DNN typically do not need full precision to guaran-

tee the DNN prediction accuracy [3, 5]. In general, using a low bit-

width format to represent weights and inputs saves memory space,

reduces data movement overhead, and shortens the computation

latency. Weight and input quantization have been thoroughly stud-

ied for traditional architectures. In this work, we propose weight

and input quantization schemes for ReRAM crossbars.

Weight quantization in the crossbar architecture can be achieved

by either changing the number of crossbars or the number of bits per

crossbar cell. However, the impact of device-circuit non-idealities in

the crossbar (both linear and non-linear) increases with increasing

bits per crossbar cell leading to significant losses in network accu-

racy [16]. Hence, this work assumes a fixed two bits of weights are

stored in each crossbar cell [13] and implements weight quantiza-

tion by varying the number of crossbars used to store the weights.

Input quantization in the crossbar architecture can be obtained

by either changing the number of input slices streamed or the

number of bits per slice. However, increasing the bits per input

slice requires increasing the ADC precision which increases the

overhead of the ADC non-linearly. Hence, this work assumes a

fixed one bit per input slice [13] and implements input quantization

by varying the number of input slices streamed.

2.3 Partial Sum Quantization

While weight and input quantization have received significant at-

tention by quantization flows because of their relevance to digital

architectures, partial sum quantization has not been thoroughly

0.1%

81%

2%

17%

DAC ADC Crossbar Digital

14%

58%

9%

19%
(b) (a)

Figure 2: Distribution of MVM Cost: (a) Energy Distribution

(b) Area Distribution

Table 1: Energy savings of reduced ADC resolution

ADC Res.
LSTM (24 tiles) MLP (9 tiles)

Energy (𝜇J) Diff. Energy (𝜇J) Diff.

8 (baseline) 59.0 - 16.6 -

4 46.3 -21.4% 13.2 -20.6%

2 41.0 -30.5% 11.6 -30.3%

1 38.3 -35.0% 10.8 -35.1%

studied. Partial sum quantization in the crossbar architecture can

be achieved by reducing the precision of ADCs at crossbar outputs.

We model the impact of partial sum quantization combined with

weight and input quantization by implementing a functional simula-

tor described in Section 4.2. We show that partial sum quantization

can substantially reduce the energy consumption and latency of

DNN inference accelerators.

Energy. Figure 2(a) shows the distribution of energy consump-

tion across four components (DAC, ADC, crossbar, and digital pe-

ripherals) for a 16-bit MVM operation [13]. It is clear that ADCs

are the dominating component of the total energy consumption.

Consequently, quantizing partial sums by operating ADCs at lower

resolutions can yield significant energy reductions in the MVM

operation. Table 1 shows how reducing ADC resolution translates

to reductions on the total inference energy consumption. These

results assume that ADC power decreases linearly with the ADC

resolution, which is a conservative assumption.

Latency. The latency of MVM operations is limited by ADCs,

but to understand why, it is important to first look at ADC area.

Figure 2(b) shows that ADCs consume a substantial amount of the

area in the crossbar architecture. For this reason, ADCs are time-

multiplexed such that one ADC is reused across all the columns

of the crossbar [13]. The typical size of a crossbar is 128 × 128.

Consequently, even with an ADC working at very high sampling

frequency such as 1GHz, a crossbar read operation requires 128 ns,

while typical crossbar reads without ADC require 5-20 ns [17].

Area consumption and sampling time for an ADC decrease with

reducing ADC resolution. Consequently, partial sum quantization

can achieve significant reductions in MVM latency.

3 MIXED PRECISON QUANTIZATION FLOW

We model the mixed precision quantization problem as a reinforce-

ment learning (RL) problem. In an RL problem, an agent (search

engine) interacts with the environment and learns the best policy to

take actions in certain states of the environment. The environment

in an RL problem can be modeled with a Markov Decision Process

373

Mixed PrecisionQuantization for ReRAM-based DNN Inference Accelerators ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

Table 2: Tunable parameters

Parameters Values

Weight bits 4, 8, 16, 32

Weight bits (fractional) 1, 2, ..., Weight bits - 1

Input bits 4, 8, 16, 32

Input bits (fractional) 1, 2, ..., Input bits - 1

ADC precision 1,2,3,4,5,6,7,8

(MDP) M = (S,A,P,R, 𝛾), where S is the state space, A is the

action space, P is the transition function that describle the dynam-

ics of the MDP system, R is the reward function that maps state

and action pair to a real-valued reward number, 𝛾 is the discount

factor that describes the degradation of future rewards.

3.1 MDP Modeling

In this quantization problem, we define the MDP as follows. State

spaceS is defined as all possible configurations of the DNN.We can

see this is a huge state space. 𝑂 (|S|) is exponential to the number

of layers in the DNN. Action space A is defined as all possible

quantization configurations for a layer in the DNN. Transition

function P is defined in a way such that we quantize the DNN

layer by layer from the first layer. After an action is applied on the

current layer, the environment moves to the next layer. Reward R

is defined so that accuracy, power, and latency of the quantized

DNN are all captured. Note that reward is a function of both current

state and current action. We will discuss more about the reward

definition in the following paragraphs. Discount factor 𝛾 is set to 1.

This is based on the finite-horizon problem setting, reward setting,

and the fact that we only care about the final accuracy of the fully

quantized DNN. In the RL setting, a policy 𝜋 is a function that maps

state space to action space. In other words, a policy tells the agent

the action 𝑎 to take given the current state 𝑠: 𝑎 = 𝜋 (𝑠).

3.2 Action Definition

The actions are defined as quantization configurations for a layer in

the DNN, which includes weight quantization, input quantization,

and ADC precision. All the tunable parameters are listed in Table

2. There are two parameters to describe quantizaiton of each of

weights and inputs, one is the total bit width, the other is the bit

width for the fractional part. The possible values of total bits are

powers of 2. This is a constraint that comes from bit slicing in the

functional simulator. The bit width of the fractional parts can be

any number less than the total bit width. ADC precision can be any

integer between 1 and 8. Each action represents a configuration of

these parameters for one DNN layer.

3.3 Reward Assignment

We define reward 𝑅(𝑠, 𝑎) at state 𝑠 , action 𝑎 as a function of accuracy

cost and hardware cost (energy and latency) of the quantized DNN

when running on ReRAM accelerators.

To capture the inference error of quantized DNNs, instead of

using prediction accuracy of quantized DNN as in previousworks [3,

5, 6], we use the following definition of the error of quantized model:

𝐶𝑜𝑠𝑡accuracy = 𝐿𝑜𝑠𝑠quantization − 𝐿𝑜𝑠𝑠original (1)

where 𝑙𝑜𝑠𝑠quantization and 𝑙𝑜𝑠𝑠original are the cross-entropy losses

of the quantized DNN model and the original model respectively.

The intuition is to use original model as the reference and any

differences in the output are counted as errors introduced by quan-

tization. The major reason of using loss instead of accuracy is to

reduce the number of inferences during the evaluation of a quan-

tization scheme and speed up the search progress. To model the

hardware cost (energy and latency) of quantization schemes, we

use the fractions of bitwidth over original bitwidth in each layer,

weighted by the number of weights and inputs in DNN layers as

well as ADC bitwidth. That is, the hardware cost of a quantization

scheme can be approximated as

𝐶𝑜𝑠𝑡hardware =
∑
𝑖

𝛼𝐵
𝑖
ADC

���𝑓
𝑖
input

𝐵𝑖
input

𝐵full

+ 𝑓 𝑖
weight

𝐵𝑖
weight

𝐵full

��� (2)

where𝐵𝑖
ADC

,𝐵𝑖
input

, and𝐵𝑖
weight

are theADCbitwidth, input bitwidth,

and weight bitwidth of the 𝑖th layer respectively. 𝐵full is the full

bitwidth without quantization for inputs and weights. 𝑓 𝑖
input

and

𝑓 𝑖
weight

are the fractions of number of inputs and number of weights

over total inputs and total weights respectively.

Reward is calculated based on both costs as follows:

𝑅𝑒𝑤𝑎𝑟𝑑 = −𝑇 (𝐶𝑜𝑠𝑡accuracy) −𝐶𝑜𝑠𝑡hardware (3)

where𝑇 is a threshold function:𝑇𝑡 (𝑥) = ∞ ·�𝑥>𝑡 +𝑥 . Here �𝑥>𝑡 is

the indicator functionwhich equals to 1 when 𝑥 > 𝑡 and 0 otherwise.

𝑡 is the threshold.

3.4 Learning Algorithm

With the definition of MDP, our goal is to find an optimal policy

that gives us the largest expected reward for the starting state (the

whole DNN for quantization). In order to find out the optimal policy,

we need some estimation on the potential of each state and each

action, with current policy 𝜋 , i.e., the expected value of state 𝑠 or
state-action pair (𝑠, 𝑎). The expected value of state is typically called

state-value funciton𝑉 𝜋 (𝑠), while the expected value of state-action

pair is called Q-value function 𝑄𝜋 (𝑠, 𝑎).
One thing to notice is that both state space and action space are

very large, and its almost impossible to search for optimal policy

with brute-force. We parameterize the policy as 𝜋𝜃 where 𝜃 is the

parameter. With the parameterized policy, we are able to apply

policy gradient algorithms to the problem, which is a family of RL

algorithms widely used in practice.

The basic policy gradient theorem states that the gradient of the

value function can be expressed as

∇𝑣𝜋 =
1

1 − 𝛾
E𝑠∼𝜂𝜋 ,𝑎∼𝜋 (𝑠)

[
𝑄𝜋 (𝑠, 𝑎)∇ log𝜋 (𝑎 |𝑠)]

]
(4)

where 𝑄𝜋 (𝑠, 𝑎) is the expected value of state 𝑠 and action 𝑎, which

can be estimated with value-based methods in RL. Value-based

methods learn the value function, rather than the optimal policy

itself. 𝜂𝜋 is the estimated normalized state occupancy under policy

𝜋 . This formula essentially states the weighted average of values

over potential trajectories of the agent, and the weights are the

374

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Huang, Ankit, Silveira, Antunes, Chalamalasetti, El Hajj, Kim, Aguiar, Bruel, Serebryakov, et al.

Quantized
DNN Model

Full Precision
DNN Model

Random
Samples

Outquant

Actor
Policy

Generation

Actor
Policy

Generation

Critic
Value

Estimation

Critic
Value

Estimation

Value
Function
Estimate

Policy

DNN/
ReRAM
Config.

DNN/
ReRAM
Config.

Action ADC Precision
Input Bitwidth

Weight Bitwidth

DistanceDistance

Latency
& Energy
Estimator

Latency
& Energy
Estimator

Reward
Intermediate

Feedback

Reward
Intermediate

Feedback

Reward

Reward

HW/Perf Cost

Acc.

Outref

Test Set

Figure 3: Reinforcement Learning based Mixed-Precision

Quantization Flow

function of policy gradient. The policy gradient algorithms work as

follows. First of all, we start with some policy with random param-

eters 𝜃 . We use value-based algorithms to evaluate the expected

values of state-action pairs (𝑠, 𝑎). Then we calculate the gradient

of 𝜃 using the formula, and we can update 𝜃 and get a new policy

𝜋 ′. With the new policy, we can again evaluate the execpted value

of each state-action pair (𝑠, 𝑎) again. This completes one iteration

of the algorithm. We can see the iteration consists of two parts: (1)

“Actor”: update 𝜃 with gradients of 𝜃 , and propose a new policy 𝜋 ′;
(2) “Critic”: evaluate the current policy 𝜋 with value-based methods.

Therefore, this type of combination of policy gradient and value-

based method is often called “actor-critic” methods. In this work,

the actor and critic are both implemented with fully connected

DNNs.

3.5 Putting It All Together

With definition of all the details of MDP, we can put together

everything to form a complete optimization flow. The complete

flow is illustrated in Figure 3.

The optimization flow is a combination of reinforcement learin-

ing components and quantized model evaluation components.

RL components. The RL components consist of three parts:

actor, critic, and reward. The actor part generates new policies based

on the value function estimates by calculating gradients of parame-

ters. The generated policy is parsed by DNN/ReRAM configurator

which generates ADC precision and all the bitwidths for each layer

in the DNN. The critic part reads reward from the environment

and calcuates Q-value function of this MDP. The reward part takes

in the loss measure collected from quantized model and original

model, as well as the DNN configuration, and calculates the reward

for current state 𝑠 and action 𝑎.
Quantized model evaluation components. The evaluation

components consist of test dataset, quantized DNN model, full preci-

sion DNN model, and loss measure. Test dataset generates batches

of random test samples. The batch size is configurable. Quantized

DNN model and full precision DNN model take in the sample batch

from test dataset, and run model inference. Most likely the full pre-

cision DNN model will generate a smaller loss 𝑙𝑜𝑠𝑠Ref than that of

the quantized model 𝑙𝑜𝑠𝑠Quant. The flow calculates the differences

𝑑 = 𝑙𝑜𝑠𝑠Quant − 𝑙𝑜𝑠𝑠Ref, and use 4𝑑 as the cost for the accuracy drop.

4 METHODOLOGY

4.1 Performance Simulation

To evaluate the impact of different quantization schemes on DNN

inference energy consumption and latency, we use the PUMA [15]

simulator, PUMAsim, which is a cycle-level architecture simula-

tor for ReRAM-based accelerators. PUMAsim runs applications

compiled with the PUMA compiler and provides detailed traces

of execution. The simulator incorporates timing and power mod-

els of all system components. The simulator provides options for

configuring various architectural parameters, including input and

weight bit-width. We extend the simulator to also configure ADC

resolution for evaluating partial sum quantization. We consider

2-bits per device for weight slicing and 1-bit per slice for input slic-

ing, which are the typical parameters used in past crossbar-based

accelerators [13, 15].

4.2 Functional Simulation

To evaluate the impact of different quantization schemes on DNN

inference accuracy, we develop a functional simulator to simu-

late the arithmetic behavior of ReRAM-based accelerators which

PUMAsim does not capture. Although several libraries such as

Distiller [18], Model Optimization Toolkit [19], etc. have been de-

veloped using TensorFlow and PyTorch to enable software and hard-

ware co-design studies for quantization, such frameworks cannot

emulate the precise implication of quantization on ReRAM-based

accelerators because of the intrinsic differences between digital

and ReRAM-based hardware. Digital accelerators typically express

layer operations as general matrix-matrix multiplication, which

use floating or fixed point computation units. On the other hand,

ReRAM-based accelerators typically express layer operations as

a tiled MVM which use bit-serial computation units operating in

the analog domain (discussed in Section 2). For this reason, we

develop our own functional simulator using PyTorch to analyze the

impact of quantization of different aspects of crossbar hardware:

weights, inputs, and partial sums. The functional simulator models

the key phases of MVM computation in typical crossbar acceler-

ators, namely iterative MVM, tiling, and bit-slicing, and ignores

the memory and communication aspects which are captured by

PUMAsim.

4.3 Search Flow

We use the functional simulator to guide our search flow, and the

performance simulator to calibrate our hardware cost model and

evaluate the search result. We use prediction error instead of model

accuracy as a metric to evaluate quantization accuracy. Prediction

error requires fewer samples to estimate compared to model accu-

racy. We extract a small batch of random samples from the whole

dataset, run the quantized DNN model with the functional simula-

tor, and compare its outputs with outputs from full-precision DNN

model to get the predicion error.

5 EVALUATION

5.1 Benefits of Mixed Precision Quantization

We use the performance simulator to evaluate the benefits of mixed

precision quantization in ReRAM-based accelerators. We simulate

375

Mixed PrecisionQuantization for ReRAM-based DNN Inference Accelerators ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

0
0.00005

0.0001
0.00015

0.0002
0.00025

0.0003
0.00035

0.0004

1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13

1 2 4 6 8

0

0.00002

0.00004

0.00006

0.00008

0.0001

1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13

1 2 4 6 8

0

5E-08

0.0000001

1.5E-07

0.0000002

2.5E-07

0.0000003

1 6 1014 2 8 1216 1 6 1014 1 7 1115 4 3 7 1115

1 2 3 4 5 6 7 8

0
0.0000005

0.000001
0.0000015

0.000002
0.0000025

0.000003
0.0000035

0.000004

1 7 12 1 8 13 2 5 10 15 4 10 15 8 5 10 15

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

0
0.00002
0.00004
0.00006
0.00008

0.0001
0.00012
0.00014

1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13

1 2 4 6 8

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13

1 2 4 6 8

0

0.0002

0.0004

0.0006

0.0008

0.001

1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13

1 2 4 6 8

0

0.001

0.002

0.003

0.004

0.005

1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13 1 5 9 13

1 2 4 6 8

1

2

3

4

5

6

7

8

9

10

11

1 2 4 6
(a) LeNet conv3 energy

2 4 6

(b) LeNet conv3 latency
2 3 4 55 6 7

(c) LeNet FC energy
2 3 4 55 6 7 8

(d) LeNet FC latency

1 2 4 6 8

(e) VGG16 conv1 energy (f) VGG16 conv1 latency (h) VGG16 conv5 latency (g) VGG16 conv5 energy

0
input bits

ADC bits

0
1input bits

ADC bits

1input bits

ADC bits

0
1input bits

ADC bits

0
1input bits

ADC bits

0
1input bits

ADC bits

0
1input bits

ADC bits

0
input bits

ADC bits

Energy (J)
0 0000003
Energy (J)

0 001
Energy (J)

0 00014
Energy (J)

0 0001
Latency (sec)

0 000004
Latency (sec)

0 005
Latency (sec)

0 0012
Latency (sec)

1

weight bits

weight bits

Figure 4: Energy and Latency under Quantization

(a) best reward (b) last reward (c) accuracy (d) accuracy diff (e) policy loss (f) value loss

(g) best reward (h) last reward (i) quant error (j) quant error diff (k) policy loss (l) value loss

Figure 5: Intermediate Values in Search (top: LeNet; buttom: VGG16)

all the combinations of quantization configurations of each layer

in LeNet and VGG16, and collect energy and latency results of

the simulated layer. Figures 4(a)-(d) show the energy and latency

numbers of the third convolution layer and the fully connected layer

in LeNet. Figures 4(e)-(h) show the energy and latency numbers of

the first convolution layer and the fifth convolution layer in VGG16.

As we can see from these figures, energy and latency numbers

follow similar trends as bit-widths change. With the same ADC

precision, energy and latency change linearly as input bitwidth and

weight bitwidth change. With higher ADC precision, the energy

and latency are more sensitive to changes in input bitwidth and

weight bitwidth. Although Figure 4 shows regular patterns with a

fixed ADC precision, the design space of weight bitwidth and input

bitwidth combined with ADC precision is non-linear.

5.2 Quantization Search Flow

We use our proposed mixed precision quantization search flow to

search for the optimal quantization schemes for LeNet and VGG16

that have lowest energy and latency while not losing accuracy

much. The intermediate reward and loss during the searches are

shown in Figure 5. Figures 5(a)-(f) show the results for LeNet search,

while Figures 5(g)-(l) show the results for VGG search. In our exper-

iments, we ran LeNet search for 3,000 episodes, and VGG16 search

for 600 episodes. However, note that LeNet search also converges

within 600 episodes. As shown in the figure, search converges in

both cases. At the beginning of the search, the RL agent takes ran-

dom actions to explore the design space (environment). The agent

learns about the environment at the same time. After warming up,

the agent starts to apply the knowledge it learned into the search,

and optimizes policy to improve the expected future rewards. At

the end, the agent reports the best policy it discovered in the search,

which translates to the best quantization configuration discovered.

Table 3 lists the energy, latency, and accuracy of a few quantization

schemes for LeNet discovered by the search flow. 𝑄𝑏𝑎𝑠𝑒 is the base-

line with full bit-widths. Each (𝑖,𝑤, 𝑎) tuple describes the bitwidths

for inputs (𝑖), weights (𝑤), and ADC (𝑎) for a layer. The four tuples

correspond to quantization schemes for conv1, conv2, conv3, and

fully connected layers in LeNet respectively. As the table shows, the

discovered quantization scheme achieves up to 4.84× savings in en-

ergy and 3.89× savings in latency while only losing 1.18% accuracy,

compared to 𝑄𝑏𝑎𝑠𝑒 . Schemes with even higher accuracy but less la-

tency and energy savings are also discovered, e.g. 𝑄𝑐 . These design

points reflect the tradeoffs between accuracy and performance (or

resource), and provide different design options for different design

requirements. We also evaluate the search results for VGG16 and

we get similar energy and latency savings for VGG16.

6 RELATEDWORK

Various works apply quantization to DNNs to improve the efficiency

of their execution [1–10]. ADMM-NN [20] is a framework that

376

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Huang, Ankit, Silveira, Antunes, Chalamalasetti, El Hajj, Kim, Aguiar, Bruel, Serebryakov, et al.

Table 3: LeNet quantization schemes

Quantization E (𝜇J) T (ms) Accuracy

𝑄𝑏𝑎𝑠𝑒 850.99 (1.00×) 2.95 (1.00×) 97.27% (-0.00%)

𝑄𝐴 175.61 (4.84×) 0.76 (3.89×) 96.09% (-1.18%)

𝑄𝐵 229.82 (3.70×) 0.85 (3.48×) 96.29% (-0.98%)

𝑄𝐶 468.48 (1.82×) 1.69 (1.74×) 97.07% (-0.20%)

NOTE: Values in parentheses are savings compared to𝑄𝑏𝑎𝑠𝑒 .

𝑄𝐴 : (4, 16, 7), (4, 8, 8), (4, 8, 7), (4, 16, 8);𝑄𝐵 : (16, 8, 8), (4, 8, 8), (8, 8, 8), (4, 8, 8);

𝑄𝐶 : (16,16,6), (16,8,8), (4,8,7), (4,16,7);𝑄𝑏𝑎𝑠𝑒 : (16,16,8),(16,16,8),(16,16,8),(16,16,8).

performs quantization and pruning jointly. Ares [21] is a framework

for quantifying the resilience of DNNs to faults, and considers

the impact of different quantization schemes on resilience. Choi

et al. [22] reduce the mismatch between forward and backward

passes when training networks that use quantization. Sakr et al. [23]

propose quantization for back-propagation, not just inference. All

these works focus on quantization of DNNs in general without

architecture-specific considerations.

Bit fusion [24] and UNPU [25] provide architecture support for

dynamically reconfiguring bit width in DNN accelerators to support

different levels of quantization. OLAccel [26] is an accelerator that

enables better quality quantization by handling outliers separately.

Various works that focus on quantization have also targeted FPGAs,

such as REQ-YOLO [27]which focuses on FPGA resource awareness,

and FINN [28] which specializes in binarized neural networks. All

these works focus on digital accelerators, whereas our work focuses

on ReRAM-based accelerators and the unique opportunities they

provide.

Zhu et al. [29] provide a framework for quantizing CNNs on

single-bit ReRAM crossbars. Zhang et al. [30] provide design guide-

lines for ReRAM-based DNN accelerators and include the impact of

ADC quantization as part of their study. Our framework performs

joint quantization of both weights and partial sums on two-bit

crossbars based on deep reinforcement learning.

Various works propose ReRAM-based accelerators for DNN infer-

ence [11–15] and training [31–35]. Our work proposes a framework

for quantization of DNNs to configure such accelerators. Other

frameworks have also been proposed for transforming [36, 37] and

pruning [38] DNNs for such accelerators.

7 CONCLUSION

We present a mixed precision quantization scheme and an auto-

mated quantization flow for optimizing DNN inference on ReRAM-

based accelerators. The flow uses deep reinforcement learning to

find the best configuration of weight quantization, input quantiza-

tion, and partial sum quantization across DNN layers. The evalua-

tion shows that the quantization scheme enables more optimization

opportunity and the automated quantization flow can effectively

search for the best quantization configuration. The quantization

configuration discovered by the search flow achives up to 3.89× and

4.84× improvement over baseline without quantization in terms of

inference latency and energy respectively, while only losing 1.18%

in DNN inference accuracy.

REFERENCES
[1] Patrick Judd et al. Reduced-precision strategies for bounded memory in deep

neural nets. arXiv preprint arXiv:1511.05236, 2015.
[2] Bert Moons et al. Energy-efficient convnets through approximate computing. In

WACV, pages 1–8. IEEE, 2016.
[3] Darryl Lin et al. Fixed point quantization of deep convolutional networks. In

ICML, pages 2849–2858, 2016.
[4] Charbel Sakr et al. Analytical guarantees on numerical precision of deep neural

networks. In ICML, pages 3007–3016. JMLR. org, 2017.

[5] Lu Hou et al. Loss-aware weight quantization of deep networks. arXiv preprint
arXiv:1802.08635, 2018.

[6] Kuan Wang et al. HAQ: Hardware-aware automated quantization with mixed

precision. In CVPR, pages 8612–8620, 2019.
[7] Junsong Wang et al. Design flow of accelerating hybrid extremely low bit-width

neural network in embedded FPGA. In FPL, pages 163–169, 2018.
[8] Cong Hao et al. Fpga/dnn co-design: An efficient design methodology for iot

intelligence on the edge. In DAC, New York, NY, USA, 2019.

[9] Yuhong Li et al. Edd: Efficient differentiable dnn architecture and implementation

co-search for embedded ai solutions. In DAC. IEEE Press, 2020.

[10] Cheng Gong et al. VecQ: Minimal loss dnn model compression with vectorized

weight quantization. IEEE Transactions on Computers, (01):1–1, may 5555.

[11] Xiaoxiao Liu et al. RENO: A high-efficient reconfigurable neuromorphic comput-

ing accelerator design. In DAC, pages 1–6. IEEE, 2015.
[12] Ping Chi et al. PRIME: A novel processing-in-memory architecture for neural

network computation in ReRAM-based main memory. In ISCA, 2016.
[13] Ali Shafiee et al. ISAAC: A convolutional neural network accelerator with in-situ

analog arithmetic in crossbars. In ISCA, ISCA’16, pages 14–26. IEEE Press, 2016.

[14] Ben Feinberg et al. Making memristive neural network accelerators reliable. In

HPCA, pages 52–65. IEEE, 2018.
[15] Aayush Ankit et al. PUMA: A programmable ultra-efficient memristor-based

accelerator for machine learning inference. In ASPLOS, pages 715–731, 2019.
[16] Indranil Chakraborty et al. GENIEx: A Generalized Approach to Emulating

Non-Idealities in Memristive X-bars Using Neural Networks. In DAC, 2020.
[17] Matthew J Marinella et al. Multiscale co-design analysis of energy, latency, area,

and accuracy of a ReRAM analog neural training accelerator. IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, 8(1):86–101, 2018.

[18] Neta Zmora et al. Neural network distiller, June 2018.

[19] TensorFlow. Model optimization toolkit.

[20] Ao Ren et al. ADMM-NN: An algorithm-hardware co-design framework of dnns

using alternating direction methods of multipliers. In ASPLOS, 2019.
[21] Brandon Reagen et al. Ares: A framework for quantifying the resilience of deep

neural networks. In DAC, pages 1–6. IEEE, 2018.
[22] Yoojin Choi et al. Learning low precision deep neural networks through regular-

ization. arXiv preprint arXiv:1809.00095, 2018.
[23] Charbel Sakr et al. Per-tensor fixed-point quantization of the back-propagation

algorithm. In ICLR, 2019.
[24] Hardik Sharma et al. Bit fusion: Bit-level dynamically composable architecture

for accelerating deep neural network. In ISCA, pages 764–775, 2018.
[25] Jinmook Lee et al. UNPU: A 50.6 TOPS/W unified deep neural network accelerator

with 1b-to-16b fully-variable weight bit-precision. In ISSCC, pages 218–220, 2018.
[26] Eunhyeok Park et al. Energy-efficient neural network accelerator based on

outlier-aware low-precision computation. In ISCA, pages 688–698. IEEE, 2018.
[27] Caiwen Ding et al. REQ-YOLO: A resource-aware, efficient quantization frame-

work for object detection on fpgas. In FPGA, pages 33–42, 2019.
[28] Yaman Umuroglu et al. FINN: A framework for fast, scalable binarized neural

network inference. In FPGA, pages 65–74, 2017.
[29] Zhenhua Zhu et al. A configurable multi-precision cnn computing framework

based on single bit rram. In DAC, pages 1–6. IEEE, 2019.
[30] Wenqiang Zhang et al. Design guidelines of rram based neural-processing-unit:

A joint device-circuit-algorithm analysis. In DAC, pages 1–6. IEEE, 2019.
[31] Mahdi Nazm Bojnordi et al. Memristive Boltzmann machine: A hardware accel-

erator for combinatorial optimization and deep learning. In HPCA, 2016.
[32] Ming Cheng et al. Time: A training-in-memory architecture for memristor-based

deep neural networks. In DAC, page 26. ACM, 2017.

[33] Linghao Song et al. Pipelayer: A pipelined ReRAM-based accelerator for deep

learning. In HPCA, pages 541–552. IEEE, 2017.
[34] Fan Chen et al. ReGAN: A pipelined ReRAM-based accelerator for generative

adversarial networks. In ASP-DAC, pages 178–183. IEEE, 2018.
[35] Aayush Ankit et al. PANTHER: A programmable architecture for neural network

training harnessing energy-efficient reram. IEEE Transactions on Computers, 2020.
[36] Yu Ji et al. NEUTRAMS: Neural network transformation and co-design under

neuromorphic hardware constraints. In MICRO, page 21. IEEE Press, 2016.

[37] Yu Ji et al. Bridge the gap between neural networks and neuromorphic hardware

with a neural network compiler. In ASPLOS, pages 448–460. ACM, 2018.

[38] Yandan Wang et al. Group Scissor: Scaling Neuromorphic Computing Design to

Large Neural Networks. In DAC, page 85. ACM, 2017.

377

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

