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Abstract—The exploding complexity and computation efficiency requirements of applications are stimulating a strong demand for
hardware acceleration with heterogeneous platforms such as FPGAs. However, a high-quality FPGA design is very hard to create and
optimize as it requires FPGA expertise and a long design iteration time. In contrast, software applications are typically developed in a
short development cycle, with high-level languages like Python, which is at a much higher level of abstraction than all existing hardware
design flows. To close this gap between hardware design flows and software applications, and simplify FPGA programming, we create
PyLog, a high-level, algorithm-centric Python-based programming and synthesis flow for FPGA. PyLog is powered by a set of compiler
optimization passes and a type inference system to generate high-quality design. It abstracts away the implementation details, and
allows designers to focus on algorithm specification. PyLog takes in Python functions, generates PyLog intermediate representation
(PyLog IR), performs several optimization passes, including pragma insertion, design space exploration, and memory customization,
etc., and creates the complete FPGA system design. PyLog also has a runtime that allows users to run the PyLog code directly on the
target FPGA platform without any extra code development. The whole design flow is automated. The evaluation shows that PyLog
significantly improves FPGA design productivity and generates highly efficient FPGA designs that outperform highly optimized CPU
implementation and state-of-the-art FPGA implementation by 3.17× and 1.24× on average.

Index Terms—FPGA, high-level synthesis, Python, design optimization.
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1 INTRODUCTION

THE last decade has witnessed an explosive growth of
new applications in terms of quantity, diversity, and

demands for computing capability and energy efficiency.
As an example, deep learning algorithms, which have been
shown to be successful in many domains, are driving the
revolutionary changes in computer system design. Accord-
ing to Dean et al. [1], the number of machine learning
papers on arXiv [2] doubles in less than two years, which
has outpaced Moore’s Law. The rapid growth of diverse
applications poses immense challenges to many aspects of
computing systems, including compiler, architecture, stor-
age, etc.

These challenges have motivated new computing sys-
tems for the new decade. The FPGA-based computing
platform is an emerging platform that provides reconfig-
urability, along with high performance, low latency, and
high energy efficiency. FPGA’s unique computing capability
makes it a promising platform to tackle the rising compu-
tation challenges. FPGA accelerators have been deployed in
both cloud servers and edge devices at scale. However, as
FPGAs are getting used in increasing number of emerging
applications and scenarios at a rapid pace, programming
FPGA and optimizing FPGA design gradually become the
main barriers in FPGA development.
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The most widely-adopted FPGA development flow to-
day starts with programming FPGA at the register transfer
level (RTL) in hardware description languages (HDL) such
as Verilog and VHDL. Then designers use FPGA synthe-
sis tools from FPGA vendors to synthesize RTL designs
into FPGA bitstreams, which are used to configure FPGA.
Programming FPGA at this level requires rich expertise in
digital circuit design and the FPGA architecture. Besides,
programming at this level is non-intuitive, error-prone, and
hard to reuse code compared with modern programming
languages, leading to long development, optimization, and
verification cycles.

High-level synthesis (HLS) aims to simplify FPGA pro-
gramming. Elevating the abstraction level of FPGA pro-
gramming to that of C/C++/OpenCL [3], [4], [5], [6], HLS
tools enable FPGA designers to express their algorithms
in more familiar high-level languages. Developers are ex-
pected to use HLS pragmas or directives to guide the HLS
tools to optimize and generate desired RTL design. Com-
pared with RTL design flow, HLS allows FPGA developers
to develop, optimize, verify, and reuse their design at a
higher level, thereby greatly improving productivity. How-
ever, as C/C++/OpenCL are initially designed for general-
purpose processors and start with an inherent sequential
execution model inside each kernel/function definition of
these languages, they are essentially different from the
FPGA’s fine-grained parallel processing nature (OpenCL
model can describe parallel work-items but it is at thread-
granularity and not very well supported in current HLS
tools). The existing HLS tools are also designed in a way
that accommodates the sequential execution model of input
languages.
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Fig. 1. FPGA Design Flow with PyLog.

As a compromise between the HLS programming model
and the FPGA execution model, HLS users often manually
annotate their code with HLS pragmas or directives to give
HLS compiler hints on parallelism and desirable synthesis
approaches. These pragmas have a significant impact on
the performance and energy efficiency of the synthesis
output. Oftentimes code transformation and rewriting are
also needed to improve the outcome. In the end, the quality
of synthesized design from HLS highly depends on how the
code is written and how the HLS pragmas are added to the
code. This requires a considerable amount of engineering
time to iteratively adjust the source code and pragmas
used. Complicated applications or thorough optimizations
may lead to long source code that is difficult to read and
maintain. For example, the HLS C code for convolution
kernel from CHaiDNN [7] library has nearly 8,000 lines,
which is much longer than the well-optimized convolution
code for CPU or GPU.

Apart from the difficulties in creating and optimizing
designs with current FPGA programming flow, the gap in
the abstraction level between application programming and
FPGA programming is another challenge in FPGA design.
Applications are typically developed with languages at a
much higher level of abstraction, where the programming
models and styles focus more on describing the algorithm
itself, instead of low-level implementation details. In the
current HLS flow, when there is a need to accelerate the
application, FPGA developers typically need to first lower
the abstraction level of the application, re-implement the
application in plain C code, and use it as the starting point
for HLS. This lowering step is time-consuming and error-
prone, and it also makes the FPGA design cycle longer.

These challenges in current FPGA design flows urge
us to further elevate the abstraction level of FPGA pro-
gramming. Among the existing programming languages,

Python is one of the most popular and widely-used lan-
guages. It has been well adopted in various domains such
as machine learning, scientific computing, data analysis,
education, etc. Python is also easy to learn. We propose
PyLog, an algorithm-centric Python-based programming
and synthesis flow for FPGA. PyLog uses general Python
compatible syntax, and it provides a set of handy low-
level and high-level built-in operators that are capable of
describing most of the common computation patterns in a
natural way.

The PyLog compiler takes Python code as input, and
compiles the code into optimized HLS-synthesizable C code
with HLS pragmas. Fig. 1 shows the FPGA design flow
with PyLog. We design PyLog in a way that the Python
language allows the developers to focus on algorithm and
computation flow description without much implementa-
tion details, while the PyLog compiler takes over the tra-
ditional FPGA developers’ burden of exploring possible
implementations and optimizations. The functional nature
of the Python language also preserves some algorithm-level
design information that is helpful for PyLog analysis and
transformation. In the PyLog flow, algorithm and imple-
mentation are separated as much as possible. The goal of
this design is to relieve FPGA programmers from manual
design tuning while giving the PyLog compiler maximum
information about computation patterns and therefore max-
imum freedom of design optimization. PyLog will be open-
sourced for future research in this field.

The key contributions of this work are:

• We design and implement PyLog, a high-level
Python-based programming and synthesis flow for
FPGA, which greatly simplifies FPGA programming.
The expressiveness of Python allows developers to
achieve high design quality with much fewer lines
of code compared with previous C/C++ based high-
level synthesis flows.

• PyLog compiler is an ahead-of-time compiler and it
is capable of doing various types of program analysis
and optimizations. It features PyLog intermediate
representation, type inference engines, and a set of
compiler optimizations, which are all designed to
create highly efficient FPGA systems.

• PyLog provides a set of high-level operators that
ease algorithm description. These operators are gen-
eral enough to describe computation patterns across
different domains, and their implementation can be
configured and optimized by PyLog to meet different
design requirements.

• PyLog automatically generates optimized design
from high-level algorithm specification, based on
hardware resource constraints. Evaluation shows
that PyLog generates highly efficient FPGA designs
that outperform highly optimized CPU implemen-
tation and state-of-the-art FPGA implementation by
3.17× and 1.24× on average.

The rest of the paper is organized as follows. Section 2
reviews related works in literature. Then, the paper presents
PyLog programming model in detail in Section 3, and
elaborates on PyLog compiler design in Section 4. Section 5
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evaluates PyLog with several real-world workloads. Finally,
Section 6 concludes the paper.

2 RELATED WORKS

Recently there are growing interests in the research com-
munity on high-level programming languages for FPGAs.
HeteroCL [8] is one recent work that builds on the TVM
framework [9]. HeteroCL is built as an API library of the
Python Language, and its compiler is a runtime compiler.
When HeteroCL code runs, it makes API calls to con-
struct computation patterns and computing schedules from
Python-syntax statements and generates synthesizable C
code for Merlin HLS compiler [10]. For example, HeteroCL
exposes APIs to perform code transformations such as loop
pipelining, loop unrolling, quantization, etc. Although both
HeteroCL and PyLog use Python syntax, their approaches
are very different. HeteroCL is more like a Python library
that is used to describe computation flow, instead of an
implementation of a subset or extension of the Python
language.

On the contrary, PyLog directly implements a subset of
the Python language, PyLog code is compiled by ahead-of-
time Python language compiler and the code that program-
mers write is what is the input to the compiler. PyLog’s
ahead-of-time compilation setting has several advantages.
First of all, this enables maximum flexibility of the lan-
guage, and makes it very easy to be extended. There is no
constraints or limitation on the language design. Second,
PyLog is designed to be compatible with standard Python
grammar, and Python programmers can immediately start
to code in PyLog. The existing Python code can be simply
synthesized without much modification. Another difference
between HeteroCL and PyLog is that, with HeteroCL, pro-
grammers still need to manually apply transformations and
optimizations using HeteroCL APIs, while in PyLog, the
compiler is responsible for implementation and optimiza-
tion by default. Programmers can use pragmas to force the
compiler to generate a specific implementation of the PyLog
code, if they choose to do so.

Dahlia [11] is another high-level programming language
that compiles to HLS C code. Dahlia uses Scala-like syntax
and it uses a type system to enforce design constraints in
the HLS code so that unrolling and memory partitioning
factors match. Similar to HLS flow, Dahlia requires users to
specify design pragmas. PyLog doesn’t require manual an-
notation of HLS pragmas. On the contrary, PyLog compiler
automatically inserts pragma to optimize the design.

There are also several works that use Python and other
high-level languages like Scala, and Haskell as hardware-
description language (HDL) [12], [13], [14], [15]. The biggest
difference between PyLog and these works is that PyLog
flow is a high-level synthesis flow, and it does not require
hardware knowledge to program in PyLog. These previous
high-level HDLs elevate the syntax of the input languages,
but users still need hardware expertise to use these HDLs.

3 PYLOG PROGRAMMING MODEL

3.1 Overview
PyLog presents a unified programming model for host
and accelerator logic with consistent syntax and semantics.

@pylog
def accel(d, w):

...
# main
d = np.array(...)
w = np.array(...)
accel(d, w)
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Fig. 2. The PyLog Flow and Example System Architecture.

This seamless host-accelerator programming model enables
agile system design, convenient functional simulation, and
flexible design space exploration.

Listing 1 shows a high-level example of PyLog program
that describes both host and accelerator. This example con-
tains two functions, preprocess and compute. Function
compute is decorated with a Python decorator @pylog,
therefore it is a PyLog kernel function and will be syn-
thesized into a hardware accelerator on FPGA by PyLog.
With @pylog decorator, programmers can easily specify
accelerator function in the existing Python code.

As shown in the example, both host and accelerator are
programmed with Python at the same abstraction level. The
host and accelerator interact with each other seamlessly in
a natural way. PyLog closes the gap between the abstract
level of host programming and FPGA accelerator program-
ming, and enables efficient system-level host-accelerator co-
design.
1 def preprocess(data):
2 ... # data pre-processing that runs on the host
3
4 @pylog
5 def compute(inputs): # top FPGA kernel function
6 def do_work(data): # user defined function
7 ...
8 for d in inputs:
9 do_work(d)

10 ...
11
12 inputs = preprocess(data) # data pre-processing
13 result = compute(inputs)

# call FPGA (or run synthesis)

Listing 1. A High-Level PyLog Example.

Figure 2 illustrates the overall PyLog flow and the target
FPGA system architecture. When PyLog user runs PyLog
program with a standard Python interpreter, the @pylog
decorator calls PyLog compiler to compile the decorated
PyLog kernel function into HLS C code. Then, system gen-
erator syntesizes generated HLS C code and integrates all
the system components to create a complete FPGA design.
The generated FPGA bitstream is used to configure the
resource and interconnects on FPGA. The rest of PyLog
program is interpreted by the standard Python interpreter,
and this part is the host code that runs on the host CPU.
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TABLE 1
PyLog’s Built-in Modes

Mode Description

cgen Generates optimized high-level synthesis C code
hwgen cgen then run FPGA synthesis
deploy Program and call FPGA then collect results
pysim Simulate PyLog code with Python interpreter

When the decorated function is called, PyLog runtime is
invoked to program FPGA, allocate and populate mem-
ory and invoke FPGA to accelerate the computation. The
lower half of Figure 2 shows an example of PCIe-based
FPGA platform. Note that PyLog can support both PCIe-
based high-performance FPGAs and low-power SoCs and
MPSoCs. CPU and FPGA interact through memory-mapped
I/O ports as well as configuration registers on FPGA side.

PyLog requires the arguments of the PyLog functions to
be NumPy arrays or NumPy scalars. From these NumPy
object inputs, PyLog collects type and shape information
of the arguments to the top function, which is the initial
information for the type inference engine in PyLog.

To run FPGA synthesis or run FPGA accelerator, users
simply run the whole program with standard Python in-
terpreter. When the decorated Python function compute
is called (line 9), PyLog compiler is invoked to look for the
synthesized design for the decorated function. If the function
has not been synthesized before, PyLog will compile the
decorated compute function, generate compute FPGA IP,
integrate IPs into a complete FPGA design, and finally
synthesize FPGA hardware design and get FPGA bitstream
and configuration files. If there exists a synthesized design
for the decorated function for the target FPGA platform but
the design has not been deployed in the target FPGA, then
PyLog will program the FPGA, allocate memory, populate
memory space with input arguments, and call FPGA ac-
celerator and collect results. To run the FPGA accelerated
programs, users do not need to write any extra FPGA
specific code, and they will not notice any difference in
the way of running the code on CPU or on FPGA. All
the underlying CPU-FPGA interactions are taken care of by
PyLog runtime. PyLog synthesis and execution share the
same piece of code, which is also very similar to a regular
Python code, except the decorator @pylog. Both synthesis
flow and execution flow are fully automated.

PyLog users can also pass a “mode” string to
@pylog decorator to configure PyLog mode. For example,
@pylog(mode=‘cgen’) runs only HLS C code generation
flow. The list of possible PyLog modes is shown in Table 1.

PyLog uses Python syntax and it is friendly to both
software and hardware developers. PyLog has a built-in
type inference engine that can infer the types of objects in
the program. PyLog supports basic Python operations and
expressions as well as several high-level operators, which
makes decription of computation flow intuitive, efficient,
and natural. (Section 3.2). Besides, PyLog allows program-
mers to nest operators to express complicated computation
patterns. Nested operators significantly simplify code and
greatly increase the expressiveness of PyLog (Section 3.3). In
addition to the expressive high-level PyLog operators, Py-

Log also supports data type customization and computation
customization (Section 3.5). Besides, PyLog naturally allows
users to simulate accelerator behavior in Python (Section
3.6). These capabilities make PyLog expressive and flexible
enough to describe many different computation patterns
across application domains. The rest of this section will
describe all the features in detail.

3.2 High-Level Operators

In addition to the frequently used standard Python key-
words and built-in functions, PyLog provides a set of high-
level operators that describe common computation patterns.

Array operators. PyLog supports a set of commonly
used NumPy-style binary array operators. Listing 2 shows
two examples of array operators. The first example (line 2)
assumes that a and b are multi-dimensional arrays with
the same shape. PyLog can infer the types and shapes of
operands (a and b) as well as target (c), and further infer
the binary operations “+” and “=” (assignment) to be array
operators. PyLog generates the optimized parallel for loops
to implement this array operation. PyLog also supports
indexing and slicing that adds flexibility to expressions as
in NumPy and native Python.

PyLog slicing style is the same as that in Python. Slice ex-
pression “start:end:step” means a sequence of indices
with “start” as the first index, “start+step” as the sec-
ond index, etc. The index continues until it reaches end (but
not including end). Note that this is consistent with Python
slice’s left-inclusive and right-exclusive definition. Any of
start, end or step can be left out. If step is left out,
its value is understood to be 1. If start is left out, it means
that the slice starts with 0. If end is missing, it means that the
end value is the dimension. Using -1 for end means that the
end is dimension-1. the PyLog compiler can infer the actual
range of dimensions and indices according to the shape of
the array under consideration. For example, a[::2] means
a sub-array consisting of every other element in a.

Line 5 in the Listing 2 shows an example of using slicing
and indexing to apply array operations to sub-arrays of the
original arrays. In this example, elements in every other row
from row 2 to row 64 of z (a total of 32 rows) receive the
product of variable x and all elements in y that have index
6 in the second dimension and all the indices except the
last one in the third dimension. The compatibility between
the input and output arrays of this operation is checked
by PyLog’s type system. Also, the alignment between the
input and output elements is automatically set by PyLog.
For example, assume that x is a scalar variable. If z is
a 64 × 8 array and y is a 32 × 16 × 9 array, there will
be 32 × 8 = 256 z elements and the same number of y
elements involved. z[2,0] will receive x * y[0,6,0],
and z[4,4] will receive x * y[1,6,4]. In general, for
all the 256 elements involved, z[i,j] will receive x *
y[m,6,n] if ((i/2− 1) · 8) + j = m · 8 + n).

Note also that x can be a scalar or a vector, which
will make the meaning of * different (vector linear scal-
ing and vector element-wise multiplication, respectively).
Again, PyLog will be able to infer the types and shapes of all
the arrays with indexing and slicing, and it will also check
whether the operations are valid by comparing the shapes
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y = map(lambda a0, a1,…: op(a0[-1, 0], a1[0, 2],…), x0, x1,...)

L1: for(int i1 = 0; i1 < x0.dim(0); i1++) {
L2:   for(int i2 = 0; i2 < x0.dim(1); i2++) {

y[i1][i2] = op(x0[i1-1][i2], x1[i1][i2+2],...); }}

y = map(lambda a: w0*a[-1] + w1*a[0] + w2*a[1], x[1:-1])

L1: for(int i1 = 1; i1 < x.dim(0)-1; i1++) {
y[i1] = w0*x[i1-1] + w1*x[i1] + w2*x[i1+1]; } a[0]a[-1] a[1]

PyLog

HLS C

PyLog
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x

Fig. 3. PyLog map operator examples. (a) 2D stencil, (b) 1D convolution, (c) 2D convolution.

for (i...) {
for (j...) {

for (k...) {
...

} } }

y = map(lambda a, b: dot(a[0,:], b[:,0]), mat_a, mat_b)

for (k...) {
#pragma HLS unroll

for (i...) {
for (j...) {

} } }

...
for (i...) {

for (ii...) {
...

} }

...

...

...

PE
PE PE PE

PE PE PE

PE PE PE

PE PE PE PE

PyLog high-level operations

HLS C Implementations

Hardware Implementations

Fig. 4. Different implementations generated from same PyLog code.

of sub-arrays. Array operators plus the slicing expressions
support succinct and clear specification of linear algebra
algorithms such as convolution and matrix multiplication.
1 # Array operation based on operators "+" and "="
2 c = a + b
3
4 # Array operation with slicing
5 z[2:66:2,:] = x * y[:,6,:-1]

Listing 2. Array operation examples.

1 # Vector add
2 out = map(lambda x, y: x + y, vec_a, vec_b)
3
4 # 1D convolution
5 out = map(lambda x:w0*x[-1]+w1*x[0]+w2*x[1], vec)
6
7 # Inner product
8 out_vec[i] = dot(matrix[i,:], in_vec)
9

10 # Square matrix multiplication
11 out = map(lambda x,y: dot(x[0,:],y[:,0]), ma, mb)

Listing 3. PyLog map and dot examples.

map operator. PyLog supports a built-in map operator,
which is an extended version of the Python map function.
Similar to the map function in Python, map operator in
PyLog can be used as map(f,o1,...,on) to repeatedly
apply a function f to the n iterable objects o1, o2, ..., on
where all objects must have the same shape. By default, the
PyLog map operator behaves the same way as the Python
map operator. In this case, f is defined with n formal
parameters p1, p2, ... pn, each of which refers to an element
of the corresponding object that f is to be applied to in

the map operator. For example, in Line 2 of Listing 3, x
(p1) refers to an element of vec_a ( o1) and y (p2) refers
to an element vec_b (o2). In the ith iteration of the map
implementation, f takes the ith element of vec_a and the
ith element of vec_b, add them together, and assign to sum
to the ith element of out. Typically, function f is a lambda
function (anonymous function), as shown in Listing 3. For
example, in Line 2 of Listing 3, the lambda function is an
addition function whose output is produced by adding the
values of two formal parameters together.

Beyond the basic features, PyLog map further supports
an extension to allow function f to access any number
of elements in the iterable objects by specifying an offset
or a offset slice expression that specifies a collection of
offsets with each reference in the function body. The offsets
are defined based on the iteration index. For example, in
Line 5 of Listing 3, in the ith iteration of map, the lambda
function accesses vec[i-1] (specified as (x[-1]), vec[i]
(x[0]), and vec[i+1] (x[1]) in the function body. Thus
the lambda in this example is a 1D convolution function
with a 3-element filter of w0, w1, and w2. Figure 3 visualizes
a few map examples. Note that this offset extension can
naturally describe stencil operations. PyLog compiles stencil
code described with map operator and connects to SODA
[16] to generate highly efficient stencil accelerators.

dot operator. In PyLog, dot is defined as element-wise
multiplication followed by a sum reduction. In other words,
dot(a, b) is equivalent to sum(a*b), where a*b is el-
ementwise multiplication and the sum operator calculates
the sum of all elements in the iterable object. For example,
Line 8 of Listing 3 performs a dot product between row i of
matrix and in_vec and assign the output value to the ith

element of out_vect. dot operator is introduced in PyLog
to simplify programming and expose more optimization
opportunities to the compiler. This operation is frequently
used in many different applications, e.g. image filtering,
matrix multiplication, stencils, etc.

Custom operators. PyLog allows users to define custom
operators as PyLog functions, inside a PyLog decorated top
function. Similar to other operators, PyLog can infer the
types and shapes of operands and output of custom func-
tions by propagating type information from input to output
through the whole function. These user-defined functions
can be reused and simplify programming. These custom
functions will be synthesized into HLS C functions.
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3.3 Offset-Slicing and Operator Chaining
The PyLog map offsets and offset slice expressions can be
used for accessing higher dimensional formal parameter ar-
rays. For each dimension, the offset can be a single number
(e.g., 1, which means an input element in that dimension
with offset 1 is accessed in an iteration), a slice (e.g., -1:2,
which means three elements in that dimension with offsets
-1, 0, and 1 are accessed in an iteration, or the entire di-
mension (:, which means all elements in that dimension are
accessed in an iteration). For example, in Line 11 of Listing 3,
the map operator will apply the lambda function to all
positions of the 2D arrays involved. In iteration (i, j) of
map, the offset expression x[0,:] means that the function
accesses all elements of the ith row of mat_a and y[:,0]
means that the function accesses all elements of the jth

column of mat_b. That is, the map and lambda functions,
chained together in Line 11, perform a dot product between
the ith row of mat_a (x[0,:]) and the jth column of
mat_b (y[:, 0]) and assigned the dot product value to
out[i,j], i.e., a matrix multiplication.

Note that the map offset slices for accessing formal
parameter arrays should not be confused with the slicing
of PyLog arrays. Assume that x is a formal parameter of
a lambda and vec is a PyLog array, offset slice x[-1:2]
specifies three accesses to the formal parameter with offsets
-1, 0, 1 whereas vec[1:-1] produces a slice that consists
of all elements of vec except the first and the last elements
(i.e., all internal elements of vec).

The PyLog offset extension and operator chaining en-
ables Python developers to intuitively and succinctly ex-
press common computation patterns in various application
domains.For example, in Figure 3(c), img is the input to a
2D convolution, and w is 3× 3 convolution filter. The slicing
[1:-1,1:-1] applied to img extracts out the sub-array
excluding the outermost elements at the edges. The lambda
function is applied to each element in the extracted array,
img[1:-1,1:-1]. The parameter to the lambda function
is a, which corresponds to each element in the array. The
offset-slicing expression applied to a, a[-1:2,-1:2], ex-
presses a sub-array consisting of neighbor elements around
the current element a as well as a.

dot operator multiplies this square with convolution
weight w (which is also a 3 × 3 square) element-wisely,
and does a summation reduction to get the single con-
volution output at the current element a. This dot op-
eration is repeatedly applied to each element position in
img[1:-1,1:-1], and this completes the whole 2D con-
volution. Note that PyLog can infer the shape of each object
involved in the computation and users do not need to
give any hints about object shapes. Details of PyLog type
inference will be presented in Section 4.

1 # Dilated convolution where dilation = 2
2 map(lambda x:dot(x[-2:3:2,-2:3:2],w),img[2:-1,2:-1])
3
4 # Strided convolution where stride = 2
5 map(lambda x:dot(x[-1:2,-1:2],w),img[1:-1:2,1:-1:2])

Listing 4. Variants of 2D in PyLog.

In addition to basic 2D convolution, variants of more
general convolution can also be expressed easily in PyLog,
as shown in Listing 4. Dilated convolution with dilation
equals to 2 can be described (line 2) by simply replac-

TABLE 2
Examples of NumPy Operators in HLS C

Operator Tunable Performance Parameters

argmax, argmin pi: number of parallel inputs of comparison tree

max, min pi: number of parallel inputs of comparison tree

matmul po: number of output processed in parallel

convolve
po: number of output processed in parallel
pm: parallel multiplications for each output

sort qo: partition factor of the output buffer

ing a[-1:2,-1:2] with a[-2:3:2,-2:3:2] in the basic
example above. Index “-2:3:2” means the sequence of
indices of “{-2, 0, 2}”, therefore a[-2:3:2,-2:3:2]
represents a dilated convolution filter. Similarly, convolution
with non-unit stride can also be described by specifying
step in the index slices of img (line 5).

Note that these high-level operators only describe the
arithmetic relationships between array objects without spec-
ifying any actual implementation details. For example, the
map operator describes the repeated application of an op-
erator to all the elements in an array, but it does not
prescribe any ordering when iterating through these ele-
ments. In traditional HLS, the similar computation would
be expressed with nested for loops, which actually implies
an iteration order. The HLS quality heavily depends on
how the computation is expressed, a key reason why it
is hard to create optimal hardware design with HLS flow.
In the PyLog flow, the actual order of iterating in map
operation is left for the PyLog compiler to decide. This
approach not only simplifies programming, but also enables
better design optimization and code generation. Given the
high-level operators, PyLog compiler gets full information
about the computation pattern. It knows exactly where data
dependencies are in the code, which allows it to perform ag-
gressive loop transformation and other code optimization.
How PyLog performs code optimization will be discussed
in Section 4.

3.4 HLS C Library Integration

In addition to the high-level operators and Python modules
described above, PyLog also supports integration of external
HLS C library functions. This allows users to leverage the
existing highly optimized HLS libraries. We develop an
extensible library of HLS C operators that implement widely
used NumPy functions. The interface of these operators is
compatible with NumPy functions. PyLog users can call
these HLS C operators in the same way as NumPy function
calls. A few examples are shown in Table 2.

In spite of the similar interface, the specific implementa-
tion of our operator library is very different from NumPy.
These PyLog external operators are developed in HLS C lan-
guage and highly optimized for hardware. These operators
are implemented as HLS C code templates and are highly
parameterized and configurable, and can be configured by
PyLog according to data types and shapes, as well as design
goals. Similar to other PyLog operators and function calls,
PyLog type inference engine will also do type inference and
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TABLE 3
Computation Customization in PyLog

Operator Customization Description

for
unroll Unroll for loop
pipeline Pipeline for loop

map
reorder Interchange for loops
tiling Tile for loops

generic pragma Insert HLS pragma

type checking for these external operators, to figure out the
configurations of these operators and ensure the arguments
and return of these operators to be valid. Type inference and
checking is done based on the inference rules customized for
each of these operators. Taking operator matmul(A,B,C)
that performs matrix multiplication C=A*B as an example,
PyLog type engine checks if the shapes of A, B, and C has
a pattern of (m, k), (k, n) and (m,n) or not. If yes, PyLog
will configure the operator based on the inferred type and
shape and instantiate the operator template and generate
HLS C implementation. Otherwise, PyLog will stop and
output error messages accordingly.

Besides functionality parameters, these external opera-
tors also have configurable performance parameters, which
configure the implementation of the operator. PyLog tunes
these parameters to balance the performance and resource
utilization of the entire design based on the design goals.
The performance parameters are listed in the second column
of Table 2. Each operator can also be configured as pipelined
or non-pipelined according to design needs.

3.5 Bitwidth and Compute Customization

In FPGA designs, integers and fixed-point data types are
widely used to improve computation efficiency. PyLog al-
lows users to specify integer and fixed-point data types with
arbitrary precision. Listing 5 shows a few examples. The
PyLog type system supports the propagation and compati-
bility checking of user-defined data types.

1 a = pl_int8(0) # 8-bit integer
2 b = pl_uint512(0) # 512-bit unsigned integer
3 c = pl_fixed(8,3)(0.0) # 8-bit fixed-point number,
4 # 3 bits above decimal point

Listing 5. PyLog Arbitrary Precision Type Examples.

Aside from the internal optimization passes, PyLog also
allows users who want to have more control to customize
computation and memory in the code. Table 3 summarizes
the computation customization types in PyLog. For loops
can be customized with unroll or pipeline. Operator
map can be customized with reorder or tiling, which
will be applied to the for loops generated from map oper-
ation. Loop reordering and tiling are safe in map operation
since there is no loop-carried dependence in map operation.

3.6 Functional Simulation Support

With the unified and seamless host-accelerator program-
ming model provided by PyLog, programmers are not only
able to program both host and accelerator efficiently, but
also simulate the functionality of both host and accelerator
easily. PyLog provides a pysim mode that allows the PyLog

TABLE 4
High-Level FPGA Design Flow Comparison

Features Dahlia [11] HeteroCL [8] PyLog

Hardware customization 3 3 3

Data type customization 7 3 3

Ahead-of-Time compilation 3 7 3

Host programming 7 7 3

System generation 7 7 3

HLS C library integration 7 7 3

code to be interpreted by the standard Python interpreter,
and all the PyLog specific operations and customizations
will be removed or simulated. pysim can be used to sim-
plify debugging and improve development efficiency.

To summarize, Table 4 compares the features of existing
high-level FPGA design languages and flows with PyLog.

4 COMPILATION AND SYNTHESIS FLOW

PyLog flow is a fully automated FPGA programming and
synthesis flow. It consists of three parts, PyLog compiler,
PyLog system generator, and PyLog runtime.

PyLog compiler is a source-to-source compiler that trans-
lates PyLog source code to optimized HLS C code which
can be synthesized by high-level synthesis (HLS) tools. The
current supported HLS tool is Xilinx Vivado HLS [3] and
Merlin compiler [10]. However, the analysis and optimiza-
tion used in PyLog are not restricted to these HLS tools. The
code generator of PyLog can be extended to support other
HLS tools without much difficulty. The compilation steps
of PyLog compiler can be categorized into four stages: (1)
front-end analysis and PyLog intermediate representation
(PLIR) generation, (2) type inference, (3) optimization, and
(4) HLS C code generation.

PyLog system generator calls FPGA vendor’s tools to
synthesize generated HLS C code, integrates the FPGA
application kernel with other system components, and gen-
erates FPGA configuration bitstream. PyLog runtime config-
ures and invokes FPGA to accelerate computation in user’s
application.

4.1 Front-End Analysis and PLIR Generation
When a @pylog decorated function is called with NumPy
arrays and scalars as parameters, PyLog compilation be-
gins. In the first step, PyLog collects information about
the data types and shapes of input arguments to the top
function. This information is passed to PyLog sub-modules.
The source code of the top function is parsed by Python
built-in abstract syntax tree (AST) module ast, outputting
the AST of PyLog code. AST is a low-level representation
of the input code, which only represents the code syntax
structure without semantics information. AST is the starting
point for the following PyLog compilation steps. ast is the
only module from standard Python interpreter that PyLog
depends on. The following compilation steps do not depend
on existing Python interpreter.
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TABLE 5
PLIR Node Categories

Category Example Node Types

Low-Level Ops PLUnaryOp, PLBinOp, PLAssign, etc.
PyLog High-Level Ops PLMap, PLDot, PLPragma, etc.
Code Objects PLConst, PLVariable, PLArray, etc.
Code Structures PLFuncDef, PLCall, PLFor, etc.

In the first stage, PyLog front-end traverses the PyLog
AST, analyzes code structure, collects code information, and
generates PyLog intermediate representation (PLIR).

PLIR nodes include nodes representing high-level com-
putation patterns and code structures, e.g. PLMap, PLDot,
etc., as well as nodes representing lower-level generic state-
ments and operations, e.g. PLFor, PLBinOp, etc. Compared
with the nodes in the PyLog AST, each node in PLIR is
coarser in granularity, and the attributes of PLIR nodes
carries more information. Each PLIR node has multiple at-
tributes that either point to the other PLIR nodes or store the
related information about this node. Essentially, the PLIR
generation can be considered as a process where the PyLog
front-end analyzer aggregates the sub-trees and structure
information in the AST to form PLIR nodes.

Table 5 lists the representative categories of PLIR nodes
and examples. Low-level operations and expressions are the
nodes that represent basic arithmetic operations, indices,
basic expressions, etc. PLIR high-level operations are the
nodes that represent high-level primitive operations in Py-
Log, e.g. map, dot, etc. These are PyLog specific nodes.
Code structures are the nodes that represent control flow
and structure of the code, e.g., loops, branches, function
definition, function calls, etc. The data fields of a PLIR node
can point to another PLIR node; therefore, the whole PLIR
is a tree that represents the code at high-level.

4.2 Type Inference and Type Checking
One of the biggest challenges in compiling Python code is
that Python is a dynamically typed language and there is no
explicit type declaration in the Python code, which makes
it hard for compiler to understand the actual semantics of
some operations. For example, consider a simple expression
“a + b”. Since a and b can be scalars or can be multi-
dimensional arrays, this expression can mean scalar addi-
tion, or vector element-wise addition. The corresponding C
code for this expression will be very different in these two
cases. Without a context of types and shapes of a and b, it is
not possible to know the actual meaning of this expression.
To solve this problem, we implement a type inference engine
in PyLog that infers the types and shapes of each object in
the PyLog code. With PyLog type inference support, PyLog
users do not need to provides explicit type hints in PyLog
code.

In PyLog compiler, the type information of an object
includes the type of data elements in the object as well as
the number of dimensions of the object. PyLog compiler
uses PLType(ty, dim) to denote types, where ty is the
type of data elements and dim is the number of dimensions.
For simplicity, we use notation T d

t to represent PLType(t,
d). For example, the type of a three-dimensional array

Algorithm 1 Type Inference and Checking
Input: Set of all variables S; set of input variables Sin ⊂

S; set of output variables Sout ⊂ S; Type mappings T
defined on Sin ∪ Sout, PLIR with root Nroot.

Output: Type mappings T defined on S, or TYPEERROR.
1: Styped ← Sin ∪ Sout
2: for each node n ∈ POSTORDERTRAVERSAL(Nroot) do
3: if n ∈ Styped then
4: np ← PARENT(n)
5: if np /∈ Styped then
6: T (np)← TYPERULE(n→ np, T (n))
7: Styped ← Styped ∪ {np}
8: else if T (np) 6= TYPERULE(n→ np, T (n)) then
9: return TYPEERROR

10: for each nc ∈ CHILDREN(n) do
11: if nc /∈ Styped then
12: T (nc)← TYPERULE(n→ nc, T (n))
13: Styped ← Styped ∪ {nc}
14: else if T (nc) 6= TYPERULE(n → nc, T (n))

then
15: return TYPEERROR

16: if S ⊂ Styped then return T
17: else return TYPEERROR

TABLE 6
Type Inference Rules Examples

Operations Types

out = UnaryOp(a) a : Tn
t , out : Tn

t
out = BinOp(a, b) a : Tn

t1
, b : Tn

t2
, out : Tn

t1
out = dot(a, b) a : Tn

t1
, b : Tn

t2
, out : T 0

t1
out = map(f, a) a : Tn

t1
, f : T 0

t1
→ Tm

t2
, out : Tm+n

t2

y = map(lambda a: dot(a[-1:2,-1:2], w), img)

type: (float, 2)
shape: (27, 27)

type: (float, 2)
shape: (3, 3)

type: (float, 0)
shape: (0,)

type: (float, 2)
shape: (3, 3)

type: (float, 0)
shape: (0,)

type: (float, 2)
shape: (27, 27)

(input, known)(input, known)

❶

❷ ❸

❹❺

Fig. 5. An Example of Type Inference on Chained High-Level Operators.

consisting of floating-point numbers can be represented
as PLType(float, 3), or T 3

float. Algorithm 1 shows the
pseudo-code of the type inference algorithm in PyLog. Type
inference starts with type and shape information of function
arguments in the PyLog top function (which is carried by
the input NumPy objects), and type information propagates
across the whole PyLog code. Type inference is performed
on PLIR and the result type and shape information is anno-
tated to PLIR nodes. Type information propagation happens
by performing type inference at each PLIR nodes, which is
done according to the type inference rules. Table 6 list a few
examples of type inference rules.

As an example, when inferring types of objects in a
map operation, type inference engine first retrieves the type
of operands Tn

t1 from current context, which stores the
types and shapes of visible variables at current point in the
code. Then, the type engine is able to tell that the type of
the argument to function f is T 0

t1 , because map operator
iterates through each element in the operand and f takes
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code: {
loop_i: {},
loop_map_1_tile_1: {
loop_map_0: {
loop_map_1_tile_0 : {}

}
},
loop_dot_0: {
loop_dot_1: {
}

}
}

code

i dot0

dot1

map1
tile1

map0

map1
tile0

Fig. 6. An example for loop structure and its tree representation. for
loops of different types are in different colors.

one element as input. Next, the type engine infers types of
objects inside f and gets the return type of f, Tm

t2 . Finally,
as a map operator, its return value is the aggregated results
of f’s return values, so the type is Tm+n

t2 .
The shapes of objects are also inferred in the similar way,

and happens at the same time as type inference. After type
inference, the semantic of operations and expressions in the
PyLog code is determined. When inconsistency is detected
by the type system, a compilation error message is gener-
ated for the user. This makes debugging more user friendly
than pure interpreter-based Python implementations. PLIR
with type information is then ready for optimization and
code generation.

4.3 Compiler Optimization
PLIR characterizes the high-level computation patterns in
the input PyLog code, making it easier for PyLog optimizer
to optimize the computation flow. Before the optimization
stage, all the compiler analysis and transformation are in-
dependent of actual implementation. In this optimization
stage, the compiler starts to consider and optimize the
implementation for better performance. PyLog optimization
consists of three steps, high-level operators lowering, loop
transformation, and HLS pragma insertion.

High-level operator lowering. In this first step, PyLog
optimizer traverses through PLIR, and replaces high-level
operators in PLIR with functional equivalent groups of
generic low-level operators. For example, vector operators
and map operators will be replaced with a group of for
loop nodes that represent nested for loops. The information
about the type of original high-level operators (e.g. map,
dot, etc.) are kept and annotated to the generated for nodes.
This information is useful in the following optimization.

Loop transformation. For each high-level operator, Py-
Log is capable of generating multiple styles of nested for
loops, including plain sequential version, loop reordering
version, loop tiling version, and mixed optimization version
where loop reordering and tiling are combined. The type
of loop transformation used depends on the operator type
and the available hardware resources. For example, loop
reordering and loop tiling are safe and possible in map
operation since there is no loop-carried dependence in map
operation. Note that each of these versions also has one or
more tunable parameters.

HLS pragma insertion. After PyLog optimizer replaces
the high-level operators with nested for loops, the PyLog

Algorithm 2 HLS Pragma Insertion Algorithm
Input: Original loop structure L, improvement threshold

T , total available area Atotal.
Output: Loop structure L with HLS pragmas configured.

1: latency, area← EVALUATE(L)
2: for each loop L ∈ POSTORDERTRAVERSAL(L) do
3: if L has attribute unroll or pipeline then
4: continue
5: else
6: if L is from map then
7: A← {unroll, pipeline, unroll.pipeline}
8: else A← {pipeline}
9: for each action ∈ A do

10: L.action()
11: latency′, area′ ←EVALUATE(L.action())

12: if latency−latency′

area′−area < T or area′ > Atotal then
13: Undo L.action()
14: continue
15: else break

optimizer traverses the whole PLIR tree again and iden-
tifies the for loops in the code, then, it generates a loop
structure tree that represents all the for loops in the code
and their structure information. Each node in the tree is a
PLOptLoop object that represents a for loop and its infor-
mation. Each PLOptLoop object has actions of unroll(n)
and pipeline(). Figure 6 shows an example of for loop
structure and its tree representation. With this representa-
tion, the loop structure in the code becomes very clear. Then,
PyLog optimizer starts to insert HLS pragmas according to
the optimization algorithm. Algorithm 2 shows the pseudo-
code for one of the optimization heuristics. In this algorithm,
the algorithm traverses the loop structure in the post-order.
That is, the optimizer starts with the leaf nodes in the loop
structure, which corresponds to the innermost for loops in
the code. Then it moves to the parents of the traversed
nodes. For each node, determined by the type of for loop
(whether it belongs to map nodes or dot nodes or regular for
loops), the optimizer tries a set of candidate HLS pragmas
(or actions). In each trial, it evaluates the area and latency
changes after applying that pragma. If the benefits is higher
than a threshold, it accepts the change, otherwise it discards
the change. Then it continues and moves on to next action or
next node. Note that right now we are using a basic heuristic
to guide the optimization. Other more sophisticated opti-
mization/search algorithms can be used and plugged into
the PyLog optimizer and guide the optimization. We leave
this as a part of future work.

Performance and resource models. We use the perfor-
mance and resource models proposed in [17] to estimate the
latency and resource utilization of the design points of each
source code version. Based on these estimates, the compiler
identifies the optimal design points. These optimal design
points become the candidates of global design optimization.
We use an example in Section 5.3 to further demonstrate the
optimization mechanism.
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4.4 Global Design Optimization
The optimizations presented in Section 4.3 focus on fine-
grained operation-level and loop-level optimization, while
in this section, we discuss system-level optimization in
PyLog flow. Operation-level and loop-level optimizations
identify the top implementation candidates for each of the
high-level operators in PyLog. At the system-level optimiza-
tion stage, PyLog optimizer finalizes the low-level design
choices based on the global constraints and optimization
targets. We formulate this global optimization problem as
an integer linear programming (ILP) problem, solve the
problem with an ILP solver, and finally get the optimal
design choices.

At the operation-level optimization stage, for each high-
level operator pi, the optimizer identifies the set of top m

design candidates for this operator {p(1)i , p
(2)
i , . . . , p

(m)
i }, as

well as the latency and resource estimates of these candi-
dates. Let’s denote the latency and resource estimates with
mappings L : p

(j)
i → Z+ and A : p

(j)
i → Z+ respectively.

Note that for each type of FPGA resource, there will be
one estimate function. To simplify the notations, here we
only write down the formula for one type of resource. The
same formula applies to the other types of FPGA resources.
The goal of this global optimization stage is to identify the
optimal choice of design candidates for each of the high-
level operators so that the overall latency of the whole
design can be minimized, while the resource usage meets
the FPGA resource constraints. This optimization problem
can be formulated as ILP problem as follows.

We define a binary indicator variable x
(j)
i ∈ {0, 1} to

denote whether or not we choose the jth candidate of the ith

operator, i.e. p(j)i . Since only one candidate will be chosen for
a specific operator, we have the constraint

∑
j x

(j)
i = 1 for

each operator pi. Given available resource Amax on FPGA,
the optimization problem is:

min
x
(j)
i ∈{0,1}

∑
i,j

x
(j)
i L(p

(j)
i ) (1)

subject to
∑
j

x
(j)
i = 1,∀i, (2)

∑
i,j

x
(j)
i A(p

(j)
i ) ≤ Amax (3)

Please note that the summation here takes the control flows
in the program into account. For example, if a high-level
operator is called inside a sequential for loop, all the
dynamic instances of this operator will be summed up. This
formulated ILP problem is then sovled by an external ILP
solver, and the solution corresponds to the optimal choices
of high-level operators design candidates.

4.5 C Code Generation and System Generation
After optimization, all the nodes in PLIR are low-level
operators since the high-level operators have been replaced.
PyLog code generator traverses through the optimized PLIR
and generates C AST, which is then translated into actual C
code.

PyLog system generator calls FPGA synthesis tools to
synthesize generated HLS C code into FPGA IP block (Vi-
vado HLS or Merlin compiler), and integrate the IP with
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all the other system components to create the complete
FPGA design (Vitis or Merlin compiler). The whole system
generation flow is fully automated.

4.6 PyLog Runtime
When the PyLog kernel function is called, PyLog auto-
matically invokes FPGA to accelerate the program. First, it
programs FPGA, then it allocates and populates arrays in
CPU-FPGA shared memory space. Second, it invokes FPGA
accelerator, and waits for FPGA to finish. Finally, PyLog col-
lects computing results from FPGA and returns the results to
the kernel function caller in the host program. This runtime
is built on top of Xilinx PYNQ library [18], which supports
both low-power platforms and high-performance platforms.

5 EVALUATION

This section evaluates PyLog flow in several different as-
pects, namely portability, language expressiveness, and per-
formance.

5.1 Portability
PyLog flow is designed to be generic enough to be
portable across different FPGA platforms. The whole Py-
Log flow, including code generation, hardware generation,
and PyLog runtime, can be used with a wide range of
FPGA platforms. Table 8 lists the FPGA platforms that
are currently supported by PyLog flow. When targeting
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TABLE 7
Accelerator Performance Evaluation on AWS F1 Instance

Benchmark LUT Registers BRAM DSP f (MHz) P (W) TCPU THCL [8] TPyLog
TCPU
TPyLog

THCL
TPyLog

KNN 109276 74889 425 0 256.40 37.222 0.48 0.45 0.26 1.85 1.73
K-means 10829 17604 3 7 273.97 37.429 38.16 4.24 4.45 8.58 0.95

Jacobi-2D [19] 93925 111144 96 704 269.03 37.327 11.31 8.25 5.19 2.18 1.59
Seidel [19] 47304 57854 30 304 269.03 37.341 21.37 8.22 5.16 4.14 1.59

Gaussian Filter [19] 56580 75846 48 688 147.15 37.783 23.63 7.34 5.19 4.55 1.41
GEMM 12868 63759 655 1024 250.00 39.657 60.34 8.13 13.05 4.62 0.62
SpMV 8294 12787 25 21 273.97 37.225 0.29 - 0.24 1.21 -

Histogram [20] 4096 7647 13 0 273.97 37.327 5.85 - 2.07 2.83 -

Geometric Mean 3.17 1.24

TCPU: Execution time on single-thread CPU; THCL: Execution time on HeteroCL [8] generated accelerator; TPyLog: Execution time on PyLog
generated accelerator; All time values are in milliseconds (ms); ‘-’ means the implementation is not publicly available.

TABLE 8
Current Supported FPGA Platforms in PyLog

Platform Type FPGA Platforms

Low Power ZedBoard [21], PYNQ [22], Ultra96 [23]

High Performance Amazon EC2 F1 instance [24],
Alveo series (U200, U250, U280) [25]

a specific FPGA platform, one simply passes the plat-
form name to the @pylog decorator, and no other code
change is needed. For example, @pylog(mode=‘deploy’,
board=‘aws_f1’) will execute the PyLog code using
Amazon AWS F1 instance FPGAs. Exactly the same PyLog
code with @pylog(mode=‘deploy’, board=‘pynq’)
applied instead will run the program with PYNQ FPGA,
assuming FPGA bitstreams have been generated with
mode=‘hwgen’.

5.2 Expressiveness
To evaluate the expressiveness of PyLog, we compare the
number of lines of code between HLS C code and PyLog
code. To make comparison fair, for PyLog versions, we only
use PyLog built-in high-level operators to express the bench-
marks but not using other pre-built functions or libraries.
The HLS C versions are HLS C code generated by PyLog
from the corresponding PyLog version. This guarantees the
FPGA designs of two versions are equal. Figure 8 shows the
results. With PyLog, on average only 30% length of code
is needed to express computation, compared to the Vivado
HLS flow.

5.3 Design Space Exploration and Search
We evaluate the effectiveness of our compiler optimizations
by profiling the latency and resource utilization of real-
world workloads. Fig. 7 shows all the valid design points
of a 2D array addition example, as well as the optimal
design points. These design points are identified by Py-
Log compiler automatically. First of all, PyLog identifies
the four valid versions of implementation, that is, “ic12”,
“ic12+tile2”, “ic12+tile2+tile1”, and “ic12+tile2+tile1+ic23”.
Here “ic12” corresponds to the version that interchanges

loop 1 and loop2, while “tile2” is the version that tiles
loop 2. Second, PyLog explores all the valid design points
for each of these valid code versions. These design points
correspond to different ways of inserting HLS pragmas. Fig.
7 uses circles with different colors to mark the design points
from different code versions. The optimal design points on
the pareto curve are also marked in the figure. As we can see
from Fig. 7, the optimal design points come from different
code versions. Our compiler is able to identify the optimal
design points from all the code versions. These optimal
design points becomes the design candidates for the global
design optimization, which is then solved by ILP solver.

5.4 Accelerator Performance

We evaluate PyLog performance with real-world bench-
marks on Amazon EC2 F1 f1.2xlarge instance [24]. Amazon
EC2 F1 f1.2xlarge instance is a cloud computing platform
with 8-core Intel Xeon E5-2686 v4 CPU and a Xilinx Virtex
UltraScale+ XCVU9P FPGA. The benchmarks are from dif-
ferent domains and have varied computation patterns, in-
cluding linear algebra, data analytics, stencil, sparse opera-
tions, etc. Table 7 shows the evaluation results. The table lists
FPGA resource utilization (look-up tables, registers, BRAMs
and DSPs), design frequency (f (MHz)), design power (P
(W)), and kernel execution time (T (ms)) of PyLog generated
designs. TCPU is the execution time on AWS F1 CPU with
one single thread. The CPU baselines are optimized CPU
implementations from [8] and other sources. THCL is the
execution time on HeteroCL [8] generated accelerators. The
HeteroCL accelerators are generated from optimized Hete-
roCL implementations that are available online. TPyLog is the
execution time on PyLog generated accelerators. SpMV and
histogram benchmarks do not have HeteroCL implementa-
tions available yet so we do not compare with HeteroCL
versions for these two benchmark. The stencil benchmarks
(Jacobi-2D, Seidel, and Guassian Filter) are compiled to
generate Vivado HLS C code with IPs from external HLS
library SODA [16]. The other benchmarks are compiled to
Merlin C code. In terms of compilation time, PyLog HLS
C code generation only takes seconds and therefore PyLog
compilation time is negligible compared to Vitis synthesis
that takes hours.
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The last two columns in Table 7 show the speedup
achieved by PyLog accelerator over CPU implementation
and HeteroCL implementation respectively. On average, Py-
Log accelerators achieve around 3.17× and 1.24× speedup
over CPU baseline and HeteroCL accelerators. PyLog can
generate accelerators with better or similar performance
compared with HeteroCL in most of benchmarks. Note that
we uses PyLog generic backend to compile GEMM bench-
mark while HeteroCL uses special systolic array backend
for GEMM. This is the main reason for the performance gap
in GEMM benchmark. After we add support for systolic
array backends this gap will be filled. This is left as future
work. The main sources of speedup achieved by PyLog are
as follows. First, the high-level operators expose parallel
processing opportunities and the compiler is able to insert
HLS pragma with better insight. Second, PyLog compiles
Python code directly and has native support for impera-
tive programming. This enables users to have fine-grained
control in hardware generation. Third, PyLog incorporates
external highly optimized HLS libraries and it tunes the
design parameters of these libraries to achieve good balance
of performance and resource utilization.

6 CONCLUSION

In order to improve FPGA development efficiency and sim-
plify FPGA programming, we built PyLog, an algorithm-
centric Python-based FPGA programming and synthesis
flow. PyLog flow compiles Python functions into optimized
HLS C code, and generates a complete system including
FPGA accelerator as well as host-side runtime environment.
The built-in PyLog high-level operators and PyLog opti-
mizer automate design implementation and optimization,
which reduces the burden of FPGA developers. Evaluation
results show that PyLog is expressive to describe different
types of applications with few lines of code and it can
accelerates high-level software applications effectively and
achieve significant speedup.
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